11.11 Working with Files

We have already done some basic file work: We know how to open and close them, how to read and write them using buffers. But UNIX® offers much more functionality when it comes to files. We will examine some of it in this section, and end up with a nice file conversion utility.

Indeed, let us start at the end, that is, with the file conversion utility. It always makes programming easier when we know from the start what the end product is supposed to do.

One of the first programs I wrote for UNIX was tuc, a text-to-UNIX file converter. It converts a text file from other operating systems to a UNIX text file. In other words, it changes from different kind of line endings to the newline convention of UNIX. It saves the output in a different file. Optionally, it converts a UNIX text file to a DOS text file.

I have used tuc extensively, but always only to convert from some other OS to UNIX, never the other way. I have always wished it would just overwrite the file instead of me having to send the output to a different file. Most of the time, I end up using it like this:

% tuc myfile tempfile
% mv tempfile myfile

It would be nice to have a ftuc, i.e., fast tuc, and use it like this:

% ftuc myfile

In this chapter, then, we will write ftuc in assembly language (the original tuc is in C), and study various file-oriented kernel services in the process.

At first sight, such a file conversion is very simple: All you have to do is strip the carriage returns, right?

If you answered yes, think again: That approach will work most of the time (at least with MS DOS text files), but will fail occasionally.

The problem is that not all non UNIX text files end their line with the carriage return / line feed sequence. Some use carriage returns without line feeds. Others combine several blank lines into a single carriage return followed by several line feeds. And so on.

A text file converter, then, must be able to handle any possible line endings:

It should also handle files that use some kind of a combination of the above (e.g., carriage return followed by several line feeds).

11.11.1 Finite State Machine

The problem is easily solved by the use of a technique called finite state machine, originally developed by the designers of digital electronic circuits. A finite state machine is a digital circuit whose output is dependent not only on its input but on its previous input, i.e., on its state. The microprocessor is an example of a finite state machine: Our assembly language code is assembled to machine language in which some assembly language code produces a single byte of machine language, while others produce several bytes. As the microprocessor fetches the bytes from the memory one by one, some of them simply change its state rather than produce some output. When all the bytes of the op code are fetched, the microprocessor produces some output, or changes the value of a register, etc.

Because of that, all software is essentially a sequence of state instructions for the microprocessor. Nevertheless, the concept of finite state machine is useful in software design as well.

Our text file converter can be designed as a finite state machine with three possible states. We could call them states 0-2, but it will make our life easier if we give them symbolic names:

Our program will start in the ordinary state. During this state, the program action depends on its input as follows:

Whenever we are in the cr state, it is because the last input was a carriage return, which was unprocessed. What our software does in this state again depends on the current input:

Finally, we are in the lf state after we have received a line feed that was not preceded by a carriage return. This will happen when our file already is in UNIX format, or whenever several lines in a row are expressed by a single carriage return followed by several line feeds, or when line ends with a line feed / carriage return sequence. Here is how we need to handle our input in this state: The Final State

The above finite state machine works for the entire file, but leaves the possibility that the final line end will be ignored. That will happen whenever the file ends with a single carriage return or a single line feed. I did not think of it when I wrote tuc, just to discover that occasionally it strips the last line ending.

This problem is easily fixed by checking the state after the entire file was processed. If the state is not ordinary, we simply need to output one last line feed.

Note: Now that we have expressed our algorithm as a finite state machine, we could easily design a dedicated digital electronic circuit (a "chip") to do the conversion for us. Of course, doing so would be considerably more expensive than writing an assembly language program. The Output Counter

Because our file conversion program may be combining two characters into one, we need to use an output counter. We initialize it to 0, and increase it every time we send a character to the output. At the end of the program, the counter will tell us what size we need to set the file to.

11.11.2 Implementing FSM in Software

The hardest part of working with a finite state machine is analyzing the problem and expressing it as a finite state machine. That accomplished, the software almost writes itself.

In a high-level language, such as C, there are several main approaches. One is to use a switch statement which chooses what function should be run. For example,

	switch (state) {
	case REGULAR:
	case CR:
	case LF:

Another approach is by using an array of function pointers, something like this:


Yet another is to have state be a function pointer, set to point at the appropriate function:


This is the approach we will use in our program because it is very easy to do in assembly language, and very fast, too. We will simply keep the address of the right procedure in EBX, and then just issue:

	call	ebx

This is possibly faster than hardcoding the address in the code because the microprocessor does not have to fetch the address from the memory—it is already stored in one of its registers. I said possibly because with the caching modern microprocessors do, either way may be equally fast.

11.11.3 Memory Mapped Files

Because our program works on a single file, we cannot use the approach that worked for us before, i.e., to read from an input file and to write to an output file.

UNIX allows us to map a file, or a section of a file, into memory. To do that, we first need to open the file with the appropriate read/write flags. Then we use the mmap system call to map it into the memory. One nice thing about mmap is that it automatically works with virtual memory: We can map more of the file into the memory than we have physical memory available, yet still access it through regular memory op codes, such as mov, lods, and stos. Whatever changes we make to the memory image of the file will be written to the file by the system. We do not even have to keep the file open: As long as it stays mapped, we can read from it and write to it.

The 32-bit Intel microprocessors can access up to four gigabytes of memory – physical or virtual. The FreeBSD system allows us to use up to a half of it for file mapping.

For simplicity sake, in this tutorial we will only convert files that can be mapped into the memory in their entirety. There are probably not too many text files that exceed two gigabytes in size. If our program encounters one, it will simply display a message suggesting we use the original tuc instead.

If you examine your copy of syscalls.master, you will find two separate syscalls named mmap. This is because of evolution of UNIX: There was the traditional BSD mmap, syscall 71. That one was superseded by the POSIX® mmap, syscall 197. The FreeBSD system supports both because older programs were written by using the original BSD version. But new software uses the POSIX version, which is what we will use.

The syscalls.master file lists the POSIX version like this:

197	STD	BSD	{ caddr_t mmap(caddr_t addr, size_t len, int prot, \
			    int flags, int fd, long pad, off_t pos); }

This differs slightly from what mmap(2) says. That is because mmap(2) describes the C version.

The difference is in the long pad argument, which is not present in the C version. However, the FreeBSD syscalls add a 32-bit pad after pushing a 64-bit argument. In this case, off_t is a 64-bit value.

When we are finished working with a memory-mapped file, we unmap it with the munmap syscall:

Tip: For an in-depth treatment of mmap, see W. Richard Stevens' Unix Network Programming, Volume 2, Chapter 12.

11.11.4 Determining File Size

Because we need to tell mmap how many bytes of the file to map into the memory, and because we want to map the entire file, we need to determine the size of the file.

We can use the fstat syscall to get all the information about an open file that the system can give us. That includes the file size.

Again, syscalls.master lists two versions of fstat, a traditional one (syscall 62), and a POSIX one (syscall 189). Naturally, we will use the POSIX version:

189	STD	POSIX	{ int fstat(int fd, struct stat *sb); }

This is a very straightforward call: We pass to it the address of a stat structure and the descriptor of an open file. It will fill out the contents of the stat structure.

I do, however, have to say that I tried to declare the stat structure in the .bss section, and fstat did not like it: It set the carry flag indicating an error. After I changed the code to allocate the structure on the stack, everything was working fine.

11.11.5 Changing the File Size

Because our program may combine carriage return / line feed sequences into straight line feeds, our output may be smaller than our input. However, since we are placing our output into the same file we read the input from, we may have to change the size of the file.

The ftruncate system call allows us to do just that. Despite its somewhat misleading name, the ftruncate system call can be used to both truncate the file (make it smaller) and to grow it.

And yes, we will find two versions of ftruncate in syscalls.master, an older one (130), and a newer one (201). We will use the newer one:

201	STD	BSD	{ int ftruncate(int fd, int pad, off_t length); }

Please note that this one contains a int pad again.

11.11.6 ftuc

We now know everything we need to write ftuc. We start by adding some new lines in system.inc. First, we define some constants and structures, somewhere at or near the beginning of the file:

;;;;;;; open flags
%define	O_RDONLY	0
%define	O_WRONLY	1
%define	O_RDWR	2

;;;;;;; mmap flags
%define	PROT_NONE	0
%define	PROT_READ	1
%define	PROT_WRITE	2
%define	PROT_EXEC	4
%define	MAP_SHARED	0001h
%define	MAP_PRIVATE	0002h

;;;;;;; stat structure
struc	stat
st_dev		resd	1	; = 0
st_ino		resd	1	; = 4
st_mode		resw	1	; = 8, size is 16 bits
st_nlink	resw	1	; = 10, ditto
st_uid		resd	1	; = 12
st_gid		resd	1	; = 16
st_rdev		resd	1	; = 20
st_atime	resd	1	; = 24
st_atimensec	resd	1	; = 28
st_mtime	resd	1	; = 32
st_mtimensec	resd	1	; = 36
st_ctime	resd	1	; = 40
st_ctimensec	resd	1	; = 44
st_size		resd	2	; = 48, size is 64 bits
st_blocks	resd	2	; = 56, ditto
st_blksize	resd	1	; = 64
st_flags	resd	1	; = 68
st_gen		resd	1	; = 72
st_lspare	resd	1	; = 76
st_qspare	resd	4	; = 80

We define the new syscalls:

%define	SYS_mmap	197
%define	SYS_munmap	73
%define	SYS_fstat	189
%define	SYS_ftruncate	201

We add the macros for their use:

%macro	sys.mmap	0
	system	SYS_mmap

%macro	sys.munmap	0
	system	SYS_munmap

%macro	sys.ftruncate	0
	system	SYS_ftruncate

%macro	sys.fstat	0
	system	SYS_fstat

And here is our code:

;;;;;;; Fast Text-to-Unix Conversion (ftuc.asm) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Started:	21-Dec-2000
;; Updated:	22-Dec-2000
;; Copyright 2000 G. Adam Stanislav.
;; All rights reserved.
;;;;;;; v.1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%include	'system.inc'

section	.data
	db	'Copyright 2000 G. Adam Stanislav.', 0Ah
	db	'All rights reserved.', 0Ah
usg	db	'Usage: ftuc filename', 0Ah
usglen	equ	$-usg
co	db	"ftuc: Can't open file.", 0Ah
colen	equ	$-co
fae	db	'ftuc: File access error.', 0Ah
faelen	equ	$-fae
ftl	db	'ftuc: File too long, use regular tuc instead.', 0Ah
ftllen	equ	$-ftl
mae	db	'ftuc: Memory allocation error.', 0Ah
maelen	equ	$-mae

section	.text

align 4
	push	dword maelen
	push	dword mae
	jmp	short error

align 4
	push	dword ftllen
	push	dword ftl
	jmp	short error

align 4
	push	dword faelen
	push	dword fae
	jmp	short error

align 4
	push	dword colen
	push	dword co
	jmp	short error

align 4
	push	dword usglen
	push	dword usg

	push	dword stderr

	push	dword 1

align 4
global	_start
	pop	eax		; argc
	pop	eax		; program name
	pop	ecx		; file to convert
	jecxz	usage

	pop	eax
	or	eax, eax	; Too many arguments?
	jne	usage

	; Open the file
	push	dword O_RDWR
	push	ecx
	jc	cantopen

	mov	ebp, eax	; Save fd

	sub	esp, byte stat_size
	mov	ebx, esp

	; Find file size
	push	ebx
	push	ebp		; fd
	jc	facerr

	mov	edx, [ebx + st_size + 4]

	; File is too long if EDX != 0 ...
	or	edx, edx
	jne	near toolong
	mov	ecx, [ebx + st_size]
	; ... or if it is above 2 GB
	or	ecx, ecx
	js	near toolong

	; Do nothing if the file is 0 bytes in size
	jecxz	.quit

	; Map the entire file in memory
	push	edx
	push	edx		; starting at offset 0
	push	edx		; pad
	push	ebp		; fd
	push	dword MAP_SHARED
	push	dword PROT_READ | PROT_WRITE
	push	ecx		; entire file size
	push	edx		; let system decide on the address
	jc	near memerr

	mov	edi, eax
	mov	esi, eax
	push	ecx		; for SYS_munmap
	push	edi

	; Use EBX for state machine
	mov	ebx, ordinary
	mov	ah, 0Ah

	call	ebx
	loop	.loop

	cmp	ebx, ordinary
	je	.filesize

	; Output final lf
	mov	al, ah
	inc	edx

	; truncate file to new size
	push	dword 0		; high dword
	push	edx		; low dword
	push	eax		; pad
	push	ebp

	; close it (ebp still pushed)

	add	esp, byte 16

	push	dword 0

align 4
	cmp	al, 0Dh
	je	.cr

	cmp	al, ah
	je	.lf

	inc	edx

align 4
	mov	ebx, cr

align 4
	mov	ebx, lf

align 4
	cmp	al, 0Dh
	je	.cr

	cmp	al, ah
	je	.lf

	xchg	al, ah
	inc	edx

	xchg	al, ah
	; fall through

	inc	edx
	mov	ebx, ordinary

align 4
	mov	al, ah
	inc	edx

align 4
	cmp	al, ah
	je	.lf

	cmp	al, 0Dh
	je	.cr

	xchg	al, ah
	inc	edx

	xchg	al, ah
	inc	edx
	mov	ebx, ordinary

align 4
	mov	ebx, ordinary
	mov	al, ah
	; fall through

	inc	edx

Warning: Do not use this program on files stored on a disk formatted by MS-DOS® or Windows®. There seems to be a subtle bug in the FreeBSD code when using mmap on these drives mounted under FreeBSD: If the file is over a certain size, mmap will just fill the memory with zeros, and then copy them to the file overwriting its contents.